RNA helicase domain of tobamovirus replicase executes cell-to-cell movement possibly through collaboration with its nonconserved region.
نویسندگان
چکیده
UR-hel, a chimeric virus obtained by replacement of the RNA helicase domain of tobacco mosaic virus (TMV)-U1 replicase with that from the TMV-R strain, could replicate similarly to TMV-U1 in protoplasts but could not move from cell to cell (K. Hirashima and Y. Watanabe, J. Virol. 75:8831-8836, 2001). It was suggested that TMV recruited both the movement protein (MP) and replicase for cell-to-cell movement by unknown mechanisms. Here, we found that a recombinant, UR-hel/V, in which the nonconserved region was derived from TMV-R in addition to the RNA helicase domain of replicase, could move from cell to cell. We also analyzed revertants isolated from UR-hel, which recovered cell-to-cell movement by their own abilities. We found amino acid substitutions responsible for phenotypic reversion only in the nonconserved region and/or RNA helicase domain but never in MP. Together, these data show that both the nonconserved region and the RNA helicase domain of replicase are involved in cell-to-cell movement. The RNA helicase domain of tobamovirus replicase possibly does not interact directly with MP but interacts with its nonconserved region to execute cell-to-cell movement.
منابع مشابه
Influence of host chloroplast proteins on Tobacco mosaic virus accumulation and intercellular movement.
Tobacco mosaic virus (TMV) forms dense cytoplasmic bodies containing replication-associated proteins (virus replication complexes [VRCs]) upon infection. To identify host proteins that interact with individual viral components of VRCs or VRCs in toto, we isolated viral replicase- and VRC-enriched fractions from TMV-infected Nicotiana tabacum plants. Two host proteins in enriched fractions, ATP-...
متن کاملThe predicted metal-binding region of the arterivirus helicase protein is involved in subgenomic mRNA synthesis, genome replication, and virion biogenesis.
Equine arteritis virus (EAV), the prototype Arterivirus, is a positive-stranded RNA virus that expresses its replicase in the form of two large polyproteins of 1,727 and 3,175 amino acids. The functional replicase subunits (nonstructural proteins), which drive EAV genome replication and subgenomic mRNA transcription, are generated by extensive proteolytic processing. Subgenomic mRNA transcripti...
متن کاملOligomerization and activity of the helicase domain of the tobacco mosaic virus 126- and 183-kilodalton replicase proteins.
A protein-protein interaction within the helicase domain of the Tobacco mosaic virus (TMV) 126- and 183-kDa replicase proteins was previously implicated in virus replication (S. Goregaoker, D. Lewandowski, and J. Culver, Virology 282:320-328, 2001). To further characterize the interaction, polypeptides covering the interacting portions of the TMV helicase domain were expressed and purified. Bio...
متن کاملBeet necrotic yellow vein virus 42 kDa triple gene block protein binds nucleic acid in vitro.
The triple gene block (TGB) of beet necrotic yellow vein virus RNA 2 is required for cell-to-cell movement of the virus RNA. The protein P42 encoded by the 5'-proximal gene of the TGB has consensus sequence motifs characteristic of an ATP/GTP-dependent helicase. P42 was over-expressed in Escherichia coli and shown to bind both single- and double-stranded RNA and DNA by Northwestern blotting. Si...
متن کاملAcquisition of Full-Length Viral Helicase Domains by Insect Retrotransposon-Encoded Polypeptides
Recent metagenomic studies in insects identified many sequences unexpectedly closely related to plant virus genes. Here we describe a new example of this kind, insect R1 LINEs with an additional C-terminal domain in their open reading frame 2. This domain is similar to NTPase/helicase (SF1H) domains, which are found in replicative proteins encoded by plant viruses of the genus Tobamovirus. We h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of virology
دوره 77 22 شماره
صفحات -
تاریخ انتشار 2003